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In this paper, considering the amount invested in preservation technology and the replenishment sche-
dule as decision variables, we formulate an inventory model with a time-varying rate of deterioration and
partial backlogging. The objective is to find the optimal replenishment and preservation technology
investment strategies while maximizing the total profit per unit time. For any given preservation tech-
nology cost, we first prove that the optimal replenishment schedule not only exists but is unique. Next,
under given replenishment schedule, we show that the total profit per unit time is a concave function of
preservation technology cost. We then provide a simple algorithm to figure out the optimal preservation
technology cost and replenishment schedule for the proposed model. We use numerical examples to
illustrate the model.
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1. Introduction

In the literature of inventory theory, deteriorating inventory
models have been continually modified so as to accommodate
more practical features of the real inventory systems. In general,
the phenomena of deterioration are vaporization, damage, spoil-
age, dryness and so on. Certain products such as medicine, volatile
liquids, blood, food and many others deteriorate with time result-
ing in a decreasing usefulness from the original one. The analysis of
deteriorating inventory began with Ghare and Schrader (1963),
who established the classical no-shortage inventory model with a
constant rate of decay. However, it has been empirically observed
that failure and life expectancy of many items can be better
expressed by a variable deterioration rate. Covert and Philip
(1973) extended Ghare and Schrader’s model to allow for a vari-
able deterioration rate with a two-parameter Weibull distribution.
When determining the optimal inventory policy for that type of
products, we cannot ignore the loss due to deterioration. As a re-
sult, researchers including Philip (1974), Misra (1975), Tadikamalla
(1978), Wee (1997), Chakrabarty et al. (1998), Abad (2001),
Mukhopadhyay et al. (2004) and Hung (2011) developed economic
order quantity models treating the deterioration rate as a time
varying function.

It is well known that certain products such as refrigerated food,
medicine, semiconductor chips and many others have a high dete-
rioration rate. Therefore, many enterprises have studied the causes
ll rights reserved.
of deterioration and developed preservation technologies to con-
trol it and increase the profit. However, the deterioration rate of
goods mentioned above is viewed as an exogenous variable, which
is not subject to control. In practice, the deterioration rate of prod-
ucts can be controlled and reduced through various efforts like
procedural changes and specialized equipment acquisition. The
results of the sensitivity analysis in numerous studies (Taso and
Sheen, 2008; Yang et al., 2009; Geetha and Uthayakumar, 2010)
also showed that a lower deterioration rate is considered beneficial
from an economic viewpoint. More recently, to best describe the
practical inventory situation, Hsu et al. (2010) proposed a deterio-
rating inventory with a constant deterioration rate and time-
dependent partial backlogging. The main objective in their paper
is to find the retailer’s replenishment and preservation technology
investment strategies which maximize the retailer’s unit time prof-
it. The graphical analysis approach is used to show the concavity of
the objective function. However, the properties of the retailer’s
unit time profit had remained unexplored. Furthermore, the pres-
ervation technology cost was assumed to be a fixed cost, which
is independent of the length of the replenishment cycle. This
assumption is unrealistic. For instance, if new equipment, such as
refrigeration or temperature controlling equipment, is acquired,
the capital cost will be often incorporated into models using an
equivalent cost per period or a leasing fee. Procedural changes
might involve something like treating individual units of the prod-
uct, such as by wrapping them in protective material or sealing
them in air-tight containers to prevent oxidation. This would
involve a cost per unit, in addition to any periodic capital cost.
Hence, a more realistic representation of preservation technology
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Fig. 1. Graphical representation of the inventory system.
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cost should be a function of the length of replenishment cycle or
the order size or both.

The inventory system for deteriorating items has been an object
of study for a long time, but little is known about the effect of
investing in reducing the rate of product deterioration. In this pa-
per, to obtain robust and general results, we attempt to develop an
inventory model for deteriorating items with a generalized deteri-
oration rate and productivity of invested capital. The preservation
technology cost is assumed to be a function of the length of replen-
ishment cycle. In addition, we add both time-dependent backorder
cost and the cost of lost sales into the total profit. In the next sec-
tion, the assumptions and notations related to this study are pre-
sented. Then, we prove that the optimal replenishment policy
not only exists but is unique, with any given preservation technol-
ogy cost. Next, we show that the total profit per unit time is a con-
cave function of preservation technology cost with a given
replenishment schedule. Finally, numerical examples are pre-
sented to illustrate the model and the sensitivity analysis in the
optimal solutions with respect to parameters of the system is also
carried out, which is followed by concluding remarks.

2. Model notations and assumptions

The mathematical model in this paper is developed on the basis
of the following notation and assumptions.

2.1. Notations

D = the demand rate per unit time
K = the replenishment cost per order
c = the purchasing cost per unit
p = the selling price per unit, where p > c
h = the holding cost per unit time
s = the backorder cost per unit time
p = the goodwill cost of lost sales per unit
n = the preservation technology cost per unit time for reducing
the deterioration rate in order to preserve the products,
0 6 n 6 w, where w is the maximum cost of investment in pres-
ervation technology
t1 = the time at which the inventory level reaches zero
t2 = the length of period during which shortages are allowed
Q = the ordering quantity per cycle
L = the amount of lost sales per cycle
I(t) = the level of positive inventory at time t
m(n) = the proportion of reduced deterioration rate,
0 6m(n) 6 1
P(t1, t2,n) = the total profit per unit time

2.2. Assumptions

1. Replenishment rate is infinite, and the lead time is zero.
2. The time horizon of the inventory system is infinite.
3. The proportion of reduced deterioration rate, m(n), is a contin-

uous, concave, increasing function of retailer’s capital invest-
ment. Note that m00(n) < 0 implies the diminishing marginal
productivity of capital.

4. The items deteriorate at a time-varying rate of deterioration
h(t), where 0 < h(t)� 1. There is no repair or replacement of
deteriorated units during the replenishment cycle.

5. Shortages are allowed. Unsatisfied demand is backlogged, and
the fraction of shortages backordered is 1

1þdx, where x is the wait-
ing time up to the next replenishment and d is a positive con-
stant. Therefore, if customers do not need to wait, then no
sales are lost, and all sales are lost if customers are faced with
an infinite wait.
3. Model formulation

Given the assumptions mentioned before, the inventory level
follows the pattern depicted in Fig. 1. To establish the total relevant
profit function, we consider the following time intervals sepa-
rately, [0, t1) and [t1, t1 + t2). During the interval [0, t1), the inventory
is depleted due to the combined effects of demand and deteriora-
tion. Hence, the inventory level is governed by the following differ-
ential equation:

dIðtÞ
dt
¼ �D� hðtÞ½1�mðnÞ�IðtÞ; 0 < t < t1; ð1Þ

with the boundary condition I(t1) = 0. Solving the differential equa-
tion, we get the inventory level as follows:

IðtÞ ¼ De�½1�mðnÞ�gðtÞ
Z t1

t
e½1�mðnÞ�gðuÞdu; 0 6 t < t1; ð2Þ

where gðzÞ ¼
R z

0 hðuÞdu. From (2), we can obtain the number of per-
iod-units of inventory carried during the cycle asZ t1

0
IðtÞdt ¼ D

Z t1

0
e�½1�mðnÞ�gðtÞ

Z t1

t
e½1�mðnÞ�gðuÞdudt:

At time t1, the inventory level reaches zero and shortage occurs.
During the stockout period, some customers may be willing to wait
for a shipping delay while others will leave for another seller be-
cause of urgent need. For a customer who desires to purchase
the goods at time t 2 [t1, t1 + t2), (t1 + t2 � t) represents the waiting
time up to the next replenishment. Hence, over the time interval
[t1, t1 + t2), the inventory level depends only on demand, some of
which is lost while a fraction 1

1þdðt1þt2�tÞ of the demand is back-
logged, where t 2 [t1, t1 + t2). The inventory level is governed by
the following differential equation:

dIðtÞ
dt
¼ � D

1þ dðt1 þ t2 � tÞ ; t1 < t < t1 þ t2; ð3Þ

with the boundary condition I(t1) = 0. Solving the differential equa-
tion (3), we obtain the inventory level as

IðtÞ ¼�D
d

lnð1þ dt2Þ� ln½1þ dðt1þ t2� tÞ�f g; t1 6 t < t1þ t2: ð4Þ

From (4), since I(t) is negative for t 2 [t1, t1 + t2), the time-weighted
backorders due to shortages during t1 and t1 + t2 are

B ¼ �
Z t1þt2

t1

IðtÞdt ¼ D½dt2 � lnð1þ dt2Þ�
d2 :
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Moreover, the amount of lost sales incurred between time t1 and
t1 + t2 is

L ¼
Z t1þt2

t1

D 1� 1
1þ dðt1 þ t2 � tÞ

� �
dt ¼ D½dt2 � lnð1þ dt2Þ�

d
:

Therefore, the ordering quantity over the replenishment cycle can
be determined as

Q ¼ initial inventory on handþ number of backorders

¼ Ið0Þ � Iðt1 þ t2Þ ¼ D
Z t1

0
e½1�mðnÞ�gðuÞduþ D

d
lnð1þ dt2Þ ð5Þ

and the number of units sold in the replenishment cycle isZ t1

0
Ddt þ

Z t1þt2

t1

D
1þ dðt1 þ t2 � tÞdt ¼ Dt1 þ

D
d

lnð1þ dt2Þ:

We assume that the preservation technology cost depends on
the cycle length. During the inventory cycle of time-span
[0, t1 + t2), the preservation technology cost is (t1 + t2)n. Then, the
total profit per unit time of the inventory system can be written
as follows:

Pðt1; t2;nÞ ¼
1

t1 þ t2

sales revenue� purchase cost� ordering cost
�preservation technology cost�holding cost
�backorder cost� cost of lost sales

8><
>:

9>=
>;

¼ ðp� cÞDþ 1
t1 þ t2

�K � ðt1 þ t2Þnf

�
Z t1

0
½e½1�mðnÞ�gðtÞ � 1�dt� hD

Z t1

0
e�½1�mðnÞ�gðtÞ

�
Z t1

t
e½1�mðnÞ�gðuÞdudt� ½sþ dðp� cþpÞ�D

d2 ½dt2 � lnð1þ dt2Þ�
�
: ð6Þ

The problem is to determine t1, t2 and n which maximize P(t1, t2,n).
If 0 < t�1 <1; 0 < t�2 <1 and 0 < n⁄ <1, by Leibniz’s rule for inte-
grals, then t�1; t�2 and n⁄ must satisfy

@Pðt1; t2;nÞ
@t1

¼ 1
t1 þ t2

�cD½e½1�mðnÞ�gðt1Þ � 1� � hD
�

�
Z t1

0
e�½1�mðnÞ�gðtÞ @

@t1

Z t1

t
e½1�mðnÞ�gðuÞdu

� �
dt
�

� 1

ðt1 þ t2Þ2
�K � cD

Z t1

0
½e½1�mðnÞ�gðtÞ � 1�dt� hD

�

�
Z t1

0
e�½1�mðnÞ�gðtÞ

Z t1

t
e½1�mðnÞ�gðuÞdudt� ½sþ dðp� cþpÞ�D

d2

� dt2 � lnð1þ dt2Þ�½ g ¼ 1
t1 þ t2

�cD½e½1�mðnÞ�gðt1Þ �1�
�

� hD
Z t1

0
e½1�mðnÞ�½gðt1Þ�gðtÞ�dt

�
� 1

ðt1 þ t2Þ2
�K � cDf

�
Z t1

0
½e½1�mðnÞ�gðtÞ �1�dt� hD

Z t1

0
e�½1�mðnÞ�gðtÞ

�
Z t1

t
e½1�mðnÞ�gðuÞdudt� ½sþ dðp� cþpÞ�D

d2

� dt2 � lnð1þ dt2Þ�½ g ¼ 0; ð7Þ

@Pðt1; t2; nÞ
@t2

¼ � 1
t1 þ t2

½sþ dðp� c þ pÞ�D
d

dt2

1þ dt2

� �

� 1

ðt1 þ t2Þ2
�K � cD

Z t1

0
½e½1�mðnÞ�gðtÞ � 1�dt

�

�hD
Z t1

0
e�½1�mðnÞ�gðtÞ

Z t1

t
e½1�mðnÞ�gðuÞdudt

� sþ dðp� c þ pÞ½ �D
d2 ½dt2 � lnð1þ dt2Þ�

�
¼ 0 ð8Þ

and
@Pðt1; t2;nÞ
@n

¼ �1þ 1
t1 þ t2

cD
Z t1

0
m0ðnÞgðtÞe½1�mðnÞ�gðtÞdt

�

�hD
Z t1

0
m0ðnÞgðtÞe�½1�mðnÞ�gðtÞ

Z t1

t
e½1�mðnÞ�gðuÞdu

�

þ e�½1�mðnÞ�gðtÞ
Z t1

t
�m0ðnÞgðuÞe½1�mðnÞ�gðuÞdu

�
dt
�

¼ �1þ 1
t1 þ t2

cD
Z t1

0
m0ðnÞgðtÞe½1�mðnÞ�gðtÞdt

�

�hD
Z t1

0

Z t1

t
m0ðnÞ½gðtÞ � gðuÞ�e�½1�mðnÞ�½gðtÞ�gðuÞ�dudt

�
¼ 0: ð9Þ

After some algebraic manipulation, the equivalents of (7) and
(8) then become
sþ dðp� c þ pÞ
d

dt2

1þ dt2
¼ c½e½1�mðnÞ�gðt1Þ � 1� þ h

�
Z t1

0
e½1�mðnÞ�½gðt1Þ�gðtÞ�dt ð10Þ
and
�K � cD
Z t1

0
½e½1�mðnÞ�gðtÞ � 1�dt � hD

Z t1

0
e�½1�mðnÞ�gðtÞ

�
Z t1

t
e½1�mðnÞ�gðuÞdudt

� ½sþ dðp� c þ pÞ�D
d2 dt2 � lnð1þ dt2Þ �

d2t2ðt1 þ t2Þ
1þ dt2

" #

¼ 0: ð11Þ

Applying (10) and (11), we obtain the following results.

Proposition 1. For any given n, we have

(a) The system of (7) and (8) has a unique solution.
(b) The solution in (a) satisfies the second order conditions for a

global maximum of P(t1, t2jn).
Proof. Please see Appendix A for details.
With the help of Proposition 1 we know that, for any given n,

the point t�1; t
�
2

	 

which maximizes the retailer’s unit time profit

not only exists but is unique. Because a closed-form solution to (7)
and (8) cannot be found directly, an alternative is to use some
iterative method. From (10), it is trivial to see that t2 can be
expressed as a function of t1 and n, and this result reduces the
profit function from a 3-dimensional space (t1, t2,n) to a 2-
dimensional space (t1,n). For any given n, substituting (A.1) into
(A.3), we can obtain the value of t�1 from G(t1) = 0 by using Newton
Method (or its modifications). Then, t�2 follows immediately from
(A.1).

When P(t1, t2jn) is solved for a given n, P(t1, t2,n) should
improve for fixed values of t1 and t2. Next, we study the conditions
under which the optimal preservation technology cost not only
exists but is unique. For any given feasible t1 and t2, taking the
second partial derivative of (6) with respect to n yields
@2Pðnjt1; t2Þ
@n2 ¼ 1

t1 þ t2
cD
Z t1

0
m00ðnÞgðtÞe½1�mðnÞ�gðtÞ��

�½m0ðnÞgðtÞ�2e½1�mðnÞ�gðtÞ
o

dt

� hD
Z t1

0

Z t1

t
f�ge�½1�mðnÞ�½gðtÞ�gðuÞ�dudt

�
; ð12Þ
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where

f�g ¼ fm00ðnÞ½gðtÞ � gðuÞ� þ fm0ðnÞ½gðtÞ � gðuÞ�g2g:

The following proposition gives a result concerning the uniqueness
of optimal solution for the total profit per unit time P(njt1, t2). h
Proposition 2. For any given feasible (t1, t2), if the productivity of
invested capital, m(n), is a strictly concave function of n (i.e.
m00(n) < 0 or diminishing marginal productivity of capital), then there
exists a unique preservation technology cost n⁄ such that P(njt1, t2) is
maximum.
Proof. Please see Appendix B for details.
Thus at present, we can realize that, for any given feasible

(t1, t2), there exists a unique n such that P(njt1, t2) is maximum.
Because n is bounded over [0,w], the above derivation also
indicates that the optimal n⁄ should be selected to satisfy

@Pðnjt1; t2Þ
@n

¼ 0; otherwise n� ¼
0; if @Pðnjt1 ;t2Þ

@n

���
n¼0

< 0;

w; if @Pðnjt1 ;t2Þ
@n

���
n¼w

> 0:

8><
>:

ð13Þ

Combining Propositions 1 and 2, we propose the following algo-
rithm to determine the solution for the proposed model. h
Algorithm 1.

1. Start with j = 0 and the initial trial value of nj, where nj is the
root of m(n) = 0.5.

2. Find the optimal t1 and t2 from (A.1) and (A.3), for a given pres-
ervation technology cost nj.

3. Use the result gained from Step 2, and then determine the opti-
mal nj+1 by (13).

4. If the difference between nj and nj+1 is sufficiently small, set
n⁄ = nj+1, then t�1; t

�
2; n

�	 

is the optimal solution and stop. Other-

wise, set j = j + 1 and return to Step 2.

To begin the search, we need a starting value for n. Note that
since m(n) is concave and the value of m(n) is between 0 and 1,
we might choose m(n0) = 0.5 for our initial guess. Let the root of
m(n) = 0.5 be the initial trial value of n in Step 1. In Step 2, where
Proposition 1 is applied, there should be a unique local maximum
solution t�1; t

�
2

	 

of P(t1, t2,n) for the current n. Then the value of

P(t1, t2,n) is improving in Step 3 where Proposition 2 is applied.
Thus, the procedure repeating Steps 2 and 3 would converge to a
local maximum of P(t1, t2,n), which will be the global maximum.
By using several starting values of n, the algorithm can be repeated
to identify the global maximum solution.

4. Numerical example

Example 1. In order to illustrate the above solution procedure, we
consider an inventory situation where K = 120per order, p = 35/per
unit, c = 20/per unit, h = 3/per unit/per year, s = 4/per unit/per year,
p = 5/per unit, D = 1000/per year, h(t) = 0.2 + 0.1t, d = 2. The
reduced deterioration rate is m(n) = 1 � e�an, a P 0. We set
a = 0.01 and the constraint of the preservation technology cost
w = 200. By solving m(n) = 0.5, we obtain n0 = 69.3147. Then, by
applying the Algorithm 1, we have n� ¼ 151:5916; t�1 ¼
0:2351; t�2 ¼ 0:0220; P� ¼ 13919:3 and Q⁄ = 257.9. To show the
iterative scheme obtained by using Algorithm 1, the contour plot of
objective and Eqs. (9) and (A.3) is depicted in Fig. 2(a). From
Fig. 2(a), it is easy to see that the objective is concave and the
solution will converge to a unique point in a finite number of
iterations. Meanwhile, the three-dimensional retailer’s unit time
profit graph for n⁄ = 151.5916 is shown in Fig. 3.

Next, we run the numerical results with distinct values of
n = 0,20,40, . . . ,300. For the 16 given values of n, we use
Proposition 1 to find their corresponding optimal values of
t�1; t�2 and P t�1; t

�
2jn

	 

respectively. The numerical results are

shown in Table 1. Then we take the 16 values of n;P t�1; t
�
2jn

	 
	 

to depict Fig. 4. From Fig. 4, it can be seen that P njt�1; t�2

	 

is

concave under the 16 given values of n; t�1; t
�
2

	 

. Furthermore, the

numerical result of Table 1 shows that increasing the preserva-
tion technology investment results in an increase in the service
level t�1= t�1 þ t�2

	 
	 

, while the improvement involves a tradeoff

between the investment of preservation technology and the total
profit per unit time.
Example 2. In this example, the same data as in Example 1 are
used except putting limited capital w = 50. From Example 1, we
know that P(t1, t2,n) reaches its maximum at n = 151.5916. Because
P(t1, t2,n) is a strictly concave function of n, it follows that
n⁄ = w = 50. Then, by Proposition 1, we get t�1 ¼ 0:1934 and
t�2 ¼ 0:0259. The retailer’s unit time profit obtained here is
P⁄ = 13864.5 and the contour plot of objective and Eqs. (9) and
(A.3) is depicted in Fig. 2(b).

Next, we study the sensitivity of the optimal solution by
changing the values of the different parameters associated with the
model. Applying the algorithm’s procedures yields the results
reported in Table 2. The results obtained for illustrative examples
provide certain insights about the problem studies. Some of them
are as follows.

1. When the replenishment cost per order (K) increases,
t�1; t�2; n�; Q � and the service level will increase; however, P⁄

will decrease. This implies that when the replenishment cost
per order is high, the total profit per unit time is low. In addi-
tion, a larger K leads to a longer inventory cycle, which leads
to more loss due to deterioration. Then the retailer would like
to spend more money on reducing deterioration, i.e., a larger
value for n⁄. In contrast, if the parameter K is low enough, then
n⁄ will reach zero such that the inventory system reduces to
basic EOQ with partial backordering model without investment
in preservation technology.

2. When the purchasing cost per unit (c) increases, t�2; n� and Q⁄

will increase; however, t�1; P� and the service level will
decrease. From economic point of view, if the supplier provides
a higher purchasing cost per unit, the retailer will order larger
quantity in order to take the benefits of the decreases of the
deteriorating items by increasing the preservation technology
cost.

3. When the holding cost per unit time (h) increases,
t�1; n�; P�; Q � and the service level will decrease. It implies that
when the holding cost increases, the retailer should decrease
the optimal preservation technology cost to avoid too much
inventory on hand. However, if h is larger, then t�2 will increase
because backordering has become relatively less expensive than
holding inventory.

4. When the parameter a increases, t�1; P�; Q � and the service
level will increase; however, t�2 will decreases. From managerial
point of view, as a increases, it implies that the marginal return
of capital increases. Hence, the optimal total profit per unit time
increases due to a lower preservation technology cost and less
deterioration. If a is high enough, then the retailer needs to
spend less money on reducing deterioration, i.e., a smaller value
for n⁄. On the other hand, if the parameter a is low enough, then



Fig. 2. Contours of the total profit per unit time, Eqs. (9) and (A.3). The dashed line represents the boundary of the constraint w.
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Table 1
Optimal solution of P(t1, t2jn) with distinct values of n.

n t1 t2 Pðt�1; t�2; n
�Þ Service level

0 0.1666 0.0292 13785.0 0.8507
20 0.1777 0.0278 13821.7 0.8647
40 0.1883 0.0265 13851.8 0.8765
60 0.1984 0.0254 13875.7 0.8864
80 0.2078 0.0245 13893.8 0.8947

100 0.2164 0.0236 13906.6 0.9015
120 0.2243 0.0229 13914.7 0.9072
140 0.2314 0.0223 13918.7 0.9119
160 0.2376 0.0218 13919.0 0.9158
180 0.2432 0.0214 13916.1 0.9190
200 0.2479 0.0211 13910.4 0.9217
220 0.2521 0.0208 13902.4 0.9239
240 0.2556 0.0205 13892.4 0.9257
260 0.2586 0.0203 13880.7 0.9271
280 0.2611 0.0202 13867.6 0.9283
300 0.2632 0.0200 13853.3 0.9293
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13750
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13950

Fig. 4. Graphical representation of P njt�1; t�2
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n⁄ will reach zero such that the inventory system reduces to
basic EOQ with partial backordering model without that
investment.

5. When w is relatively lower, decreasing w decreases
t�1; n�; P�; Q � and the service level. However, t�2 increases if w
decreases.

6. The total profit per unit time is more sensitive on the change in
c. It implies that the effect of c on the total profit per unit time is
significant.

7. The parameters, c and h have stronger effect on the optimal ser-
vice level than the others.



o :

Table 2
Effect of changes in parameters for Example 1.

�50% �40% �30% �20% �10% 0 10% 20% 30% 40% 50%

K t�1 0.1562 0.1744 0.1911 0.2066 0.2213 0.2351 0.2483 0.2609 0.2729 0.2846 0.2958
t�2 0.0163 0.0176 0.0188 0.0199 0.0210 0.0220 0.0230 0.0240 0.0249 0.0258 0.0266
n⁄ 108.1119 119.7837 129.5074 137.8371 145.1209 151.5916 157.4121 162.7011 167.5477 172.0202 176.1725
P⁄ 14199.1 14133.3 14073.5 14018.5 13967.3 13919.3 13873.9 13830.7 13789.5 13750.1 13712.1
Q⁄ 173.1 192.6 210.6 227.3 243.0 257.9 272.1 285.7 298.7 311.2 323.3
Service
level

0.9057 0.9084 0.9105 0.9120 0.9132 0.9143 0.9151 0.9158 0.9165 0.9170 0.9175

c t�1 0.2394 0.2388 0.2381 0.2373 0.2363 0.2351 0.2336 0.2318 0.2296 0.2266 0.2226
t�2 0.0151 0.0161 0.0173 0.0186 0.0202 0.0220 0.0243 0.0270 0.0305 0.0350 0.0410
n⁄ 88.8843 105.8398 120.0324 132.1338 142.5646 151.5916 159.3736 165.9815 171.3956 175.4787 177.9019
P⁄ 23974.4 21958.5 19945.6 17935.0 15926.3 13919.3 11913.9 9910.3 7908.5 5909.0 3912.6
Q⁄ 256.7 256.8 256.9 257.1 257.5 257.9 258.5 259.2 260.2 261.3 262.9
Service
level

0.9408 0.9369 0.9324 0.9273 0.9213 0.9143 0.9058 0.8955 0.8827 0.8663 0.8445

h t�1 0.3231 0.2982 0.2780 0.2614 0.2473 0.2351 0.2245 0.2150 0.2066 0.1990 0.1921
t�2 0.0165 0.0177 0.0189 0.0200 0.0211 0.0220 0.0230 0.0238 0.0247 0.0255 0.0262
n⁄ 188.4109 179.2390 171.2144 164.0491 157.5525 151.5916 146.0698 140.9150 136.0715 131.4957 127.1528
P⁄ 14110.8 14066.6 14025.8 13988.0 13952.6 13919.3 13887.8 13857.9 13829.5 13802.3 13776.3
Q⁄ 341.0 317.2 298.1 282.4 269.2 257.9 248.1 239.5 231.8 224.9 218.7
Service
level

0.9516 0.9438 0.9362 0.9288 0.9215 0.9143 0.9072 0.9002 0.8933 0.8865 0.8799

a t�1 0.1999 0.2113 0.2197 0.2260 0.2310 0.2351 0.2385 0.2413 0.2437 0.2457 0.2475
t�2 0.0253 0.0241 0.0234 0.0228 0.0224 0.0220 0.0218 0.0216 0.0214 0.0212 0.0211
n⁄ 126.2160 146.6500 154.2640 155.8631 154.4796 151.5916 147.9653 144.0150 139.9702 135.9592 132.0531
P⁄ 13815.7 13840.8 13864.1 13884.9 13903.2 13919.3 13933.6 13946.3 13957.7 13967.9 13977.1
Q⁄ 225.7 235.9 243.6 249.4 254.1 257.9 261.1 263.8 266.1 268.1 269.9
Service
level

0.8878 0.8975 0.9039 0.9084 0.9117 0.9143 0.9163 0.9179 0.9193 0.9205 0.9214

w t�1 0.2164 0.2243 0.2314 0.2351 0.2351 0.2351 0.2351 0.2351 0.2351 0.2351 0.2351
t�2 0.0236 0.0229 0.0223 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220
n⁄ 100.0 120.0 140.0 151.5916 151.5916 151.5916 151.5916 151.5916 151.5916 151.5916 151.5916
P⁄ 13906.6 13914.7 13918.7 13919.3 13919.3 13919.3 13919.3 13919.3 13919.3 13919.3 13919.3
Q⁄ 241.3 248.3 254.6 257.9 257.9 257.9 257.9 257.9 257.9 257.9 257.9
Service
level

0.9015 0.9072 0.9119 0.9143 0.9143 0.9143 0.9143 0.9143 0.9143 0.9143 0.9143
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5. Concluding remarks

The purpose of this study is to present an inventory model
involving controllable deterioration rate to extend the traditional
EOQ model. In real markets, the retailer can reduce the deteriora-
tion rate of product by making effective capital investment in
storehouse equipment. The numerical example results succinctly
explained the importance of preservation technology investment.
It also indicated that the retailer can reduce the economic losses,
and improve customer service level to create more competitive
advantages with the investments to reduce the deterioration rate.
Furthermore, we can also see that any deterioration rate can be ap-
plied to this model such as the three-parameter Weibull deteriora-
tion rate (e.g., Philip, 1974) and Gamma deterioration rate (e.g.,
Tadikamalla, 1978). Hence the utilization of general deterioration
rates make the scope of the application broader.

The proposed model can be extended in several ways. For in-
stance, we may consider the permissible delay in payments. Also,
we could extend the model with finite replenishment rate. Finally,
we could generalize the model to allow for quantity discounts, fi-
nite capacity and others.
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Appendix A

A.1. Proof the part (a) of Proposition 1

From (10), after some algebra, we obtain

t2 ¼
c½e½1�mðnÞ�gðt1Þ � 1� þ h

R t1
0 e½1�mðnÞ�½gðt1Þ�gðtÞ�dt

½sþ dðp� c þ pÞ� � d c½e½1�mðnÞ�gðt1Þ � 1� þ h
R t1

0 e½1�mðnÞ�½gðt1Þ�gðtÞ�dt
n

ðA:1Þ

It is easy to see that, by assumption t2 > 0,

sþ dðp� c þ pÞ
d

> c½e½1�mðnÞ�gðt1Þ � 1� þ h
Z t1

0
e½1�mðnÞ�½gðt1Þ�gðtÞ�dt:

Since the first derivative of RHS of previous inequality with respect
to t1 is

½1�mðnÞ�hðt1Þ ce½1�mðnÞ�gðt1Þ þ h
Z t1

0
e½1�mðnÞ�½gðt1Þ�gðtÞ�dt

� �
þ h > 0

and hence, it is a strictly increasing function of t1. Therefore, the
root of

sþ dðp� c þ pÞ
d

¼ c½e½1�mðnÞ�gðt1Þ � 1� þ h
Z t1

0
e½1�mðnÞ�½gðt1Þ�gðtÞ�dt;

say t̂1, is the upper bound of t1.
Next, in order to prove the existence of the solution, differenti-

ating (7) implicitly with respect to t1 yields
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sþ dðp� c þ pÞ
ð1þ dt2Þ2

dt2

dt1
¼ ½1�mðnÞ�hðt1Þ ce½1�mðnÞ�gðt1Þ

�

þ h
Z t1

0
e½1�mðnÞ�½gðt1Þ�gðtÞ�dt

�
þ h > 0 ðA:2Þ

and hence dt2/dt1 > 0. From (11), suppose that

Gðt1Þ ¼ �K � cD
Z t1

0
½e½1�mðnÞ�gðtÞ � 1�dt � hD

Z t1

0
e�½1�mðnÞ�gðtÞ

�
Z t1

t
e½1�mðnÞ�gðuÞdudt

� ½sþ dðp� c þ pÞ�D
d2 dt2 � lnð1þ dt2Þ �

d2t2ðt1 þ t2Þ
1þ dt2

" #
:

ðA:3Þ

After assembling (10), the implicit differentiation of G(t1) with re-
spect to t1 yields

dGðt1Þ
dt1

¼ �cD½e½1�mðnÞ�gðt1Þ � 1� � hD
Z t1

0
e½1�mðnÞ�½gðt1Þ�gðtÞ�dt

þ ½sþ dðs� c þ pÞ�D
d

dt2

1þ dt2
þ ½sþ dðs� c þ pÞ�Dðt1 þ t2Þ

ð1þ dt2Þ2
dt2

dt1

¼ ½sþ dðs� c þ pÞ�Dðt1 þ t2Þ
ð1þ dt2Þ2

dt2

dt1
> 0:

Clearly, G(t1) is a strictly increasing function of t1. Moreover, it can
be shown that
Gð0Þ ¼ �K < 0

and

lim
t!t̂1

Gðt1Þ ¼ �K � cD
Z t̂1

0
½e½1�mðnÞ�gðtÞ � 1�dt � hD

Z t̂1

0
e�½1�mðnÞ�gðtÞ

�
Z t̂1

t
e½1�mðnÞ�gðuÞdudt � ½sþ dðp� c þ pÞ�D

d2

� lim
t!t̂1

dt2 � lnð1þ dt2Þ �
d2t2ðt1 þ t2Þ

1þ dt2

" #

¼ 1 > 0; ðby ðA:1Þ;t2 !1 as t1 ! t̂1Þ

thus the Intermediate Value Theorem implies that the root of
G(t1) = 0 is unique. This completes the proof of part (a). h

A.2. Proof the part (b) of Proposition 1

Let t�1; t
�
2

	 

be the solution of (7) and (8), then the second-order

condition for maximization becomes

@2Pðt1; t2jnÞ
@t2

1

�����
ðt1 ;t2Þ¼ t�1 ;t

�
2ð Þ
¼ � D

t�1 þ t�2
½1�mðnÞ�h t�1

	 

� ce½1�mðnÞ�g t�1ð Þ
nn

þ h
Z t�1

0
e½1�mðnÞ� g t�1ð Þ�gðtÞ½ �dt

�
þ h
�
< 0;

@2Pðt1; t2jnÞ
@t2

2

�����
ðt1 ;t2Þ¼ t�1 ;t

�
2ð Þ
¼ � 1

t�1 þ t�2

D½sþ dðp� c þ pÞ�
1þ dt�2
	 
2 < 0

and

@2Pðt1; t2jnÞ
@t1@t2

�����
ðt1 ;t2Þ¼ t�1 ;t

�
2ð Þ
¼ 0:
Thus, the determinant of the Hessian matrix at the stationary point
t�1; t

�
2

	 

is

detðHÞ ¼ @
2Pðt1; t2jnÞ

@t2
1

�����
ðt1 ;t2Þ¼ t�1 ;t

�
2ð Þ
� @

2Pðt1; t2jnÞ
@t2

2

�����
ðt1 ;t2Þ¼ t�1 ;t

�
2ð Þ

� @2Pðt1; t2jnÞ
@t1@t2

�����
ðt1 ;t2Þ¼ t�1 ;t

�
2ð Þ

2
4

3
5

2

> 0:

Clearly, the Hessian matrix at point t�1; t
�
2

	 

is negative-definite and

t�1; t
�
2

	 

represents global maximum point of P(t1, t2jn). This com-

pletes the proof of part (b). h
Appendix B

B.1. Proof of Proposition 2

Proof. Because t 6 u 6 t1 and g(z) is a strictly increasing function
of z, we have g(t) � g(u) < 0. Further, since [m0(n)]2 > 0 and
m00(n) < 0, we obtain { �} > 0. Using these results, it follows that
@2P(njt1, t2)/@n2 < 0 for any feasible (t1, t2). This implies that
P(njt1, t2) is concave in n for given values of t1 and t2 and results
in a maximum value. h
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